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An empirical model to predict wave run-up on beaches considering storm wave and surge conditions and berm
widths (dry beach) has been derived through a synthetic data set generated from a one-dimensional Boussinesq
wave model. The new run-up equation is expressed as a function of a new Iribarren number composed of three
regions: the foreshore, the berm or dry beach width, and the dune. The dissipative effect of the berm is included
as a reduction factor expressed as a function of the bermwidthnormalized by the offshorewavelength. The equa-
tion is relatively simple but is shown to be applicable for a fairly wide variety of berm widths and storm wave
conditions associated with extreme events such as hurricanes, and it is shown to be an improvement over
existing empirical run-upmodels that do not consider the bermwidth explicitly. In addition, the newparameter-
ization of the Iribarren number considering the three regions and the bermwidth reduction factor are shown to
improve other empirical models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many cases of inundation and coastal flooding occur during ex-
treme events such as hurricanes when the maximum wave run-up
exceeds the dune crest. Therefore, the severity of hurricanes can be
grossly determined by the relation among the wave and surge con-
ditions and the beach morphology (Sallenger, 2000). Although
existing time-dependent numerical models provide accurate, deter-
ministic estimates of wave run-up for given boundary conditions, it is
nevertheless necessary to develop simplified expressions for wave
run-up that can be used, for example, in probabilistic models for a
range of surge and wave forcing and morphological conditions. The
complex nature of wave run-up on realistic cross-shore profiles pro-
hibits analytical solutions, so simplified run-up formulas rely on empir-
ical approaches based on field observations (e.g., Holman, 1986) and
laboratory experiments (e.g., Mase, 1989). Few field observations
exist, however, of run-up during extreme storm events (e.g., Senechal
et al., 2011), so it is necessary to consider the suitability of these empir-
ical equations for extreme events.

Generally, wave run-up is characterized by the Iribarren number,
which is also known as the surf-similarity parameter (Battjes, 1974),

and iswidely utilized forwave run-up on beaches and coastal structures
and for tsunami inundation. The Iribarren number is

ξ ¼ tanβffiffiffiffiffiffiffiffiffi
H=L

p ð1Þ

where β is the angle of the characteristic slope, H is the characteristic
wave height, and L is the characteristic wavelength. For consistency,
we use the nomenclature “Iribarren number” rather than “surf-similar-
ity parameter” because the parameter is also used for coastal structures
and tsunamis without surf zones, andwe follow the conventional nota-
tion of ξ.

For beaches,β is often taken as the angle of the foreshore slope around
the still water shoreline, although other values have been used such as
the slope at the breakpoint or the mean slope over the active portion of
the surf zone. For coastal structures, β is generally less ambiguous since
rubble mound revetments and breakwater are typically built with a con-
stant slope, usually much steeper than sand beaches. The characteristic
wave height is typically the deepwater wave height, H0, the wave height
at breaking Hb, or, in the case of coastal structures, the incident wave
height at the toe of the structure, Hi. Similarly, the characteristic wave-
length can be the deep water wavelength L0 = gT2/2π, the wavelength
at breaking Lb estimated using linear wave theory and the local water
depth at breaking, or the wavelength estimated at the toe of a coastal
structure. There are a variety of wave conditions to consider such as reg-
ular waves from laboratory studies, irregular waves, and transient waves
such as tsunamis. For regular wave studies, H and T are not ambiguous.
For the case of irregular waves, H is generally characterized by the
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significant wave height Hs, and T is generally characterized by the peak
period Tp, although other characterizations are possible such as H1/10 or
themeanwave period Tm. For transientwave studies such as for tsunamis
modeled as solitarywaves,H is generally themaximumpositive displace-
ment at a given depth, and T is defined as the duration over which the
positive displacement exceeds a certain value, for example.

Since Hunt (1959), empirical run-upmodels have been expressed as
a function of the Iribarren number,

R
H

¼ Kξ ð2Þ

where R is the maximum run-up defined as the vertical projection
above the still water level, and K is an empirical constant.

Holman (1986) used field observations of wave run-up at Duck, NC,
to develop an empirical run-up model on natural beaches using a simi-
lar form as Eq. (2) and is given by

R2%

H0
¼ 0:83ξ f þ 0:2 ð3Þ

where the run-up is the value exceeded by 2% of the run-up events, R2%,
normalized by the significant wave height in deep water. The Iribarren
number is defined using the angle of the foreshore slope βf, significant
wave height in deep water, and the wavelength in deep water using
the peak wave period:

ξ f ¼
tanβ fffiffiffiffiffiffiffiffiffiffiffi
H0
�
L0

q ð4Þ

Mase (1989) developed a similar run-up equation based on irregular
waves generated in a laboratory on a plane slopes and is written as

R2%

H0
¼ 1:86ξ0:71f ð5Þ

where Eq. (4)was used to define the Iribarren number in a similarman-
ner as Holman (1986), and the foreshore slope was the same as the
slope for the incident waves prior to breaking and ranged from 1/30
to 1/5.

Using data sets fromUS East andWest Coast beaches, Stockdon et al.
(2006) developed an empirical wave run-up model (hereinafter re-
ferred to as the “Stockdon model” for brevity) using an Iribarren-like
form given as

R2% ¼ 1:1 0:35 tan β f H0L0ð Þ0:5 þ 0:5 H0L0 0:563 tan β f
2 þ 0:0004

� �h i0:5
� �

ð6Þ

This model is composed of separate terms to consider different contri-
butions of the wave setup and swash. The swash (the second term on
the left hand side of Eq. (6)) is further separated into two parts consid-
ering incident wave and infra-gravity wave effects.

In parallel with the development of empirical equations for wave
run-up on beaches, there has been significant development for wave
run-up equations on coastal structures. Unlike studies on beaches, stud-
ies of run-up on coastal structures were developed primarily using lab-
oratory experiments due, in part, to difficulties of direct measurements
on coastal structures during storms. Van derMeer and Stam (1992) pro-
vided an empirical run-up equation as piecewise continuous function
composed of linear and power curve using the Iribarren number

R2%

Hs
¼ 0:96ξm

1:17ξm
0:46

ξm b 1:5
ξm ≥ 1:5

�
ð7Þ

where ξm is the Iribarren number defined using the structure slope,Hs is
the significant wave height of the incident waves at the toe of the

structure and, and the subscriptm denotes that the wavelength is com-
puted using themean period. This work was later extended by DeWaal
and Van der Meer (1992) and VanderMeer (1998) to provide a general
wave run-up model on dikes to account for the design of the berm,
roughness effects of the dike, andwave direction through a combination
of reduction factors and is given as

R2%

Hs
¼ 1:6 γ1γ2γ3 ξp ð8Þ

where the subscript p denotes that Iribarren number is defined using
the peak period Tp. The reduction factor γ is a dimensionless number
less than 1.0, determined experimentally to account for effects of the
berm geometry, γ1, surface roughness such as natural grass or rock,
γ2, and wave direction, γ3. This run-up model has an empirical maxi-
mum limit of R2%/Hs = 3.2 γ2 γ3.

Eqs. (7) and (8) have been widely adopted for the design of coastal
structures, and examples of their application are summarized in coastal
engineering manuals (e.g., Pullen et al., 2007; USACE, 2003). Similar to
run-upmodels for beaches, some empiricalmodels use slightly different
forms of the Iribarren number, particularly when defining the slope be-
cause some revetments and dikes may be composed of multiple slopes
or may include relatively short, flat berms. The need to account for the
profile shape was recognized by Saville (1958), and models generally
employ an ‘equivalent slope’ as summarized by Mase et al. (2013).

Although tsunamis can occur on vastly different scales compared to
windwaves on beaches and coastal structures, the Iribarren number has
been found to be a suitable parameter for tsunami run-up studies. For
example, Kobayashi and Karjadi (1994) combined numerical model re-
sults with laboratory experiments to develop an empirical formula to
predict the run-up height normalized by the incident solitary wave am-
plitude (A0) as a function of Iribarren number, given as

R
A0

¼ 2:955ξ0:395 ð9Þ

where the Iribarren number is defined using a characteristic period for
the solitarywave defined as the duration overwhich the free surface ex-
ceeds 0.05A0. Kobayashi and Karjadi (1994) show that Eq. (9) is applica-
ble for 0.125 b ξ b 1.757 and that changing the definition of the
characteristic period based on exceedance of either 0.01A0 or 0.1A0

changes the predicted run-up on the order of 10%.
The application of Iribarren number for tsunami run-up was analyt-

ically studied by Madsen and Fuhrman (2008), and it highlighted
that run-up solutions for the canonical run-up depend on Iribarren
number for the non-breaking regular wave. Furthermore, Madsen and
Schaeffer (2010) provided analytic run-up solutions for the periodic
and transient waves in terms of the Iribarren number, considering
separate breaking and non-breaking regimes. The solutions are themin-
imum value between these two terms, given respectively as,

R
A0

¼ C1 ξ
2:0
1

C2 A0=h0ð Þ−0:25ξ−0:5
1

(
ð10Þ

where A0 is the maximum amplitude of the transient (tsunami) wave
modeled using a Gaussian profile and h0 is the water depth offshore
and can be idealized as thewater depth at the continental shelf. For lab-
oratory studies and numerical simulations, h0 is typically the water
depth in the constant-depth section at the seaward boundary. C1 and
C2 are analytical constant depending on input wave types (e.g., single
wave, C1 = 0.1512 and C2 = 4.0513) as discussed in Madsen and
Schaeffer (2010). The Iribarren number ξ1 is defined by a uniform
slope, the amplitude of the single wave A0, and the deep water wave-
length based on a representative period. For the case of a single wave
which sustains the solitarywave shape but its frequency is independent
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from depth and amplitude, the representative period is the duration of
0.75% of the peak amplitude of the wave.

Park et al. (2015) compared the analytic solutions of Madsen and
Schaeffer (2010) with the output of a time-dependent numerical
model and found that the run-up in the breaking region was not pre-
dicted by Eq. (10), and that the run-up in the non-breaking region
was predicted by Eq. (10) only when bottom friction was not included.
Park et al. (2015) used data generated by the time-dependent model to
modify the solutions of Madsen and Schaeffer (2010) by separating the
domain into three regimes (breaking, transition, and non-breaking).
Further, Park et al. (2015) defined an offshore and onshore Iribarren
number to account for large differences between the bathymetric and
topographic slopes, and they also accounted for the effects of bottom
friction and breakingnumericallywhichwere not possible in the analyt-
ical treatment of Madsen and Schaeffer (2010). The empirical model of
Park et al. (2015) is expressed as the minimum of three terms for the
breaking, transition, and non-breaking regions, respectively, as

R
A0

¼
1:2 γξ0:51
2:5γ

4:0 A0=h0ð Þ−0:25γξ−0:5
1

8><
>: ð11Þ

where h0 is the 100 m water depth, ξ1 is the offshore Iribarren number
defined using themean slope from the 100mdepth to the shoreline, the
amplitudeA0, and the deepwaterwavelength defined as the duration of
a positivewave train exceeding 1% of themaximumamplitude. The em-
pirical constant γ was derived from the numerical simulations and de-
pends on the onshore Iribarren number (ξ2) and is given as

γ ¼ 0:9; 1:2; 1:6½ � f or ξ2 b 1:8; 1:8 ≤ ξ2b 4:5; ξ2 ≥ 4:5½ � ð12Þ

where the onshore slope for ξ2 is defined as the average slope from the
still water shoreline to the point ofmaximum run-up. This equationwas
applied without recalibration and shown to predict the tsunami run-up
for the 2011 Tohoku tsunami reasonably well despite the fact that the
model was developed using the output of a one-dimensional numerical
model.

This brief introduction highlights that parameterization of run-up
using the Iribarren number is successful across a range of scales includ-
ingwave run-up on beaches, coastal structures, and tsunamis. However,
there remain two salient questions for the application for beaches. First,
to what extent are existing run-up formulas affected by the presence of
the dune–berm system in the case of high surge and waves? Second, in
the absence offield observationsduring extreme conditions, towhat ex-
tent can the output of time-dependent numericalmodels be used to im-
prove parameterized wave run-up models to account for the extreme
surge and berm?

2. Numerical model setup

2.1. Dune–berm topography and foreshore bathymetry

Fig. 1 shows an example of the idealized cross-shore dune–berm–
foreshore profile used for this studywhere x is the horizontal coordinate
positive in the seaward directionwith x=0at the shoreline, and z is the
elevation from the still water level (z = 0). We developed a simplified
dune–berm profile using a berm height (hB), berm width (WB), dune
height (hD), and dune width (WD) based on two assumptions that the
bermwidth is flat and that the dune follows a Gaussian shape. We gen-
erated the cross-shore beach profile following the extended equilibrium
beach profile of Romańczyk et al. (2005) to avoid the infinite slope at
the end of the foreshore slope, specifying the median grain size (D50)
and depth of closure (hC). For simplicity, we prescribed a flat beach
profile for x N 1600mand z b−20msince the incidentwaves are essen-
tially unaffected by the bathymetry for z b −20 m.

The dotted line in Fig. 1b shows the observed cross-shore profile
at Fire Island, NY, reported by Kraus and Rosati (1997) and is in
good agreement with our idealized dune–berm–foreshore profile
with hB=2.3m,WB=75m, hD=3.7m, andWD=26m. Our idealized
profile was examined using four other dune–berm–foreshore systems
listed in Table 1 with berm heights and widths ranging 1.6 b hB b 3.0 m
and 10 b WB b 75 m and dune heights and widths ranging
2.6 b hD b 5.5 m and 26 b WD b 100 m. A dashed line, parallel to the
SWL, indicates the stormsurge level (S) used for themodel. S is the overall

Fig. 1. (a) Idealized cross-shore profile, and (b) and detail of dune–berm–foreshore system. Dotted line shows observed profile at Fire Island, NY (Kraus and Rosati, 1997).
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increased water level due to wind stress, inverse barometric effects, and
Coriolis effects associated with wind driven currents. S does not include
wave setup effects due to breaking which are captured separately in the
numerical model.

2.2. Wave and surge conditions

We considered recent observations of hurricanes in the US to devel-
op realistic surge and wave conditions. On average, there are 6.2 hurri-
canes per year in the Atlantic Ocean, 1.7 of which make landfall along
the US coast (NOAA, 2012). We examined significant wave heights
and peak periods during four major hurricanes: Katrina (2005), Gustav
(2008), Ike (2008), and Sandy (2012). Considering only buoy data locat-
ed near the coast (z N −50 m), the ranges of observed significant wave
heights, Hs and peak periods, Tp were 2 b Hs b 10 and 10 b Tp b 17
(Table 2). For simplicity in our model, we defined the storm surge as a
uniform and time-invariant increase in water level and applied it for
the range of conditions 0 b S b 4.0 m. Although a much greater range
of conditions are possible for storm surge and waves under extreme
hurricane events, this represents a reasonable range for input to the
model.

2.3. Time-dependent numerical model for synthetic data set

As noted earlier, field observations of wave run-up during extreme
wave conditions, including the effects of the dry beach width, are ex-
tremely rare. Laboratory studies generally employ plane slopes, and
we knowof no laboratory studieswhichused realistic dune–berm–fore-
shore systems under hurricanewave conditions as described in the pre-
vious two sections. Therefore, we employ a time-dependent numerical
model to generate a synthetic data set to address our two questions
of this study. There are several suitable numerical models based on
the nonlinear shallow water wave equations (e.g., Kobayashi et al.,
1987; Raubenheimer and Guza, 1996) and Boussinesq equations
(e.g., Fuhrman and Madsen, 2008; Kennedy et al., 2000; Madsen et al.,
1997). For this study, we used COULWAVE (Lynett et al., 2002) which
solves a set of Boussinesq equations with a higher-order finite-volume
method because the model is open source and has been validated
through a series of bench mark problems for wave run-up and
overtopping and for tsunami inundation using both field and laboratory
data (Lynett and Liu, 2005; Lynett et al., 2002; Lynett et al., 2003; Park
et al., 2013). For wave breaking, COULWAVE applies the eddy viscosity
model which is described in Lynett (2006). The model was applied to

study the overtopping problem by Lynett et al. (2010). In this study,
the complexity of the overtopping over the irregular cross profiles of le-
vees was examined during Hurricane Katrina. Park et al. (2015) devel-
oped empirical tsunami run-up equation in a manner similar to that of
Kobayashi and Karjadi (1994) as discussed earlier.

Because the model has been validated extensively already, we use
the model ‘as is’ without changing the parameters for dissipation due
to wave breaking. The model uses an adjustable quadratic bottom fric-
tion term with a dimensionless friction factor, f, which is typically con-
stant in space and time throughout the simulation. We adjusted the
friction factor for the first series of tests as described in the next section,
and used the moderate friction value f = 0.02 for the remainder of the
tests. The model grid size was fixed at 1.0 m for all cases. The run-time
of each trial varied from 2500 to 5000 s corresponding to the input
wave periods in the range 10 b Tp b 18 s to assure that we have approx-
imately 250waves for analysis for eachmodel run.We utilized the TMA
spectral shape with default shape parameters (Bouws et al., 1985) and
assumed random phases to develop an input irregular wave condition
in the model. Three wave gages (WG1, WG2, and WG3) as shown in
Fig. 1 were setup at z = −19.0, −6.0, and −1.0 m to capture the
wave process offshore, in the shoaling region prior to breaking, and in
the surf zone after breaking.

2.4. Model cases

Three model cases were tested in this study. Case 1 (n = 72 trials)
used a range of wave height and periods with no storm surge (S = 0)
and no effect of the berm height or width. The purpose of Case 1 was
to evaluate the overall behavior of the Boussinesq model, including
thewave height decay due to breaking and the generation of infra-grav-
ity waves, and to compare the model run-up with conventional empir-
ical equations derived under similar condition. Case 2 (n = 80 trials)
used a range ofwave heights, periods and storm surge levelswith a con-
stant berm height and width. The purpose of Case 2 was to understand
the influence of the surge level on run-up heights, particularly as the
conditions transitioned from wave run-up on the foreshore slope to
the dune slope and to evaluate the conventional empirical models
under these conditions. Case 3 (n = 450 trials) expanded the data set
by including a range of berm height and widths and was used to derive
a new empirical formula and to make recommendations for improving
existing formulas.

Table 3 summarizes the input conditions for Case 1. We created
three idealized beach profiles following Romańczyk et al. (2005) as
shown in Fig. 1 by specifying three median grain sizes, D50 = 0.3, 0.4,
and 0.5 mm. These values were chosen based on the D50 = 0.4 mm
grain size reported in Hanson et al. (2010) for Long Beach, NY, similar
to that shown in Fig. 1. We note that the profile is fixed and cross-
shore sediment transport is not considered in this study. Correspond-
ingly, each beach profile had different foreshore slopes in the range
0.023 b tanβf b 0.091. The berm height was set as hB = 3.5 m for all
three profiles, and we did not include a dune for Case 1. We used mod-
erate wave height conditions (Hs =1.0 and 2.0 m), but we choose rela-
tively long wave periods (Tp =10, 12.5, 15, and 17.5 s). No storm surge
levels were included (S = 0), thus our berm height was high enough
that water did not propagate across the flat berm section. Additionally,
we tested three different friction coefficients (f = 0.01, 0.02, 0.03) to
check the model sensitivity to this parameter.

Table 4 summarizes the input conditions for Case 2.We use only one
bathymetry (D50 = 0.3 mm) with a corresponding foreshore slope of
0.023. We added berm and dune profiles (hB = 2.5 m, WB = 55 m,
hD = 5 m, WD = 70 m) similar to that shown in Fig. 1 to test four
storm surge levels (S = 0.0, 1.0, 2.0, and 3.0 m). Incident wave condi-
tions were more typical of hurricane conditions with wave heights
and periods in the range 2.0 b Hs b 5.0 m and 10 b Tp b 18 s. The bottom
friction remained fixed at f = 0.02 for all runs in Case 2.

Table 1
Observed dune and berm characteristics.

Location, State Dune Berm

hD
[m]

WD

[m]
hB
[m]

WB

[m]

Marshfield, MA(a) 4.6 100 2.0 35
Fire Island, NY(b) 3.7 26 2.3 75
St. John, FL(c) 5.0 60 3.0 50
Palm Beach, FL (c) 5.5 90 1.6 10
Panama City Beach, FL (c) 2.6 70 1.7 40

(a) USACE (1997), (b) Kraus and Rosati (1997), and (c) FDEP (2014).

Table 2
Observed hurricanes wave conditions to develop range of input conditions.

Hurricane Year Category Hs

[m]
Tp or Tm
[s]

Katrina(a) 2005 5 2–6 10–13
Gustav(b) 2008 4 4–5 13–17
Ike(c) 2008 4 4–6 10–13(e)

Sandy(d) 2012 3 5–10 10–15

(a) Wang and Oey (2008), (b) Dietrich et al. (2011), (c) Hope et al. (2013), (d) NDBC
(2014), (e) authors reported mean period Tm.

70 H. Park, D.T. Cox / Coastal Engineering 115 (2016) 67–78



Table 5 summarizes the input conditions for Case 3. Similar to Case 2,
we used only one bathymetry (D50 = 0.3 mm) but we had five berm
widths (WB = 0, 25, 55, 100, and 200 m). In addition, we simulated
surge levels with higher resolution at 0.5 m increments (S = 1.0, 1.5,
2.0. 2.5, 3.0, 3.5, and 4.0 m), but slightly lower range of wave height
were tested (2.0 Hs 4.0 m). Bottom friction was fixed at f = 0.02. A
total of n=450 cases were simulated in Case 3, and some of Case 3C o-
verlapped with Case 2.

3. Wave run-up results

3.1. Case 1: model behavior, run-up analysis, and existing run-up equations

It is well known that low frequency motions are generated and
amplified as waves propagate across the surf and swash zone (Guza
and Thornton, 1982) and that these motions play an important role in
wave run-up on beaches (Raubenheimer and Guza, 1996; Ruggiero
et al., 2001). Therefore, it is necessary to check that the time-
dependent model reproduces these phenomena. Fig. 2a–c shows the
spectral energy density of surface elevation in the offshore region, at
the shoaling region prior to breaking, and in the surf zone, respectively,
for Case 1AwithHs=2.0m, and Tp=12.5 s. The spectra are plotted as a
function of normalized frequency, f*, defined as f*= f/fp, where fp is the
peak frequency atWG1, so that f*=1 corresponds to the spectral peak
of the incident wave spectrum. Fig. 2a–c shows that the low frequency
motion is negligible offshore, increases slightly near breaking, and
gives a dominant signal in the surf zone. Similar patterns of wave fre-
quency transformation were reported by many researchers (e.g., Cox
et al., 1992; Raubenheimer and Guza, 1996), and time-dependent
models have been verified to reproduce the correct wave transforma-
tion using laboratory and field data. Therefore, we assume that the
time-dependentmodel correctly reproduces the low frequencymotions
relevant to the processes of wave run-up.

Friction is one of the free parameters that can be adjusted empirical-
ly in the numerical model. Higher values of f induce more dissipation
during wave propagation and swash run-up, and therefore decrease
the run-up. Based on the assumption that the Stockdon model can pre-
dict the wave run-up data on the natural beach idealized in Case 1, we
compared the Stockdonmodel with the numerical model results to cal-
ibrate the bottom friction as discussed later.

Fig. 3a shows the time-series of the run-up over the entire time se-
ries for the same example run shown in Fig. 2, and Fig. 3b shows a detail
of the run-up for 1400 b t b 1850 s. The stars in Fig. 3b are used to indi-
cate the individual run-up maxima. The overall characteristics of the
run-up shown in Fig. 3b are similar to that for field and laboratory stud-
ies, and the total number of run-up maxima for a given run is signifi-
cantly lower than the number of incident waves owing to surf and
swash zone processes such as bore-capture and run-up/rundown colli-
sions simulated in the time-dependentmodel. For example, the number
of incident waves was 230, but the total number of run-upmaximawas
163 for the case of Fig. 3.

Fig. 4 shows the cumulative probability density function of the run-
up where each individual run-up event (marked by a star in Fig. 3b, for
example) is plotted as a dot in Fig. 4. Due to the discretization of the
model with approximately 0.11 m spacing, the run-up events appear
in discrete bins along the x-axis. The solid curve is an interpolation

through the mean value of each bin. We use this interpolated curve to
estimate the following run-up statistics: Rmax, defined as the maximum
run-up height among the individual events; R2% defined as the average
of the highest 2% run-up events; R1/10, the average of highest 1/10 run-
up events; and R1/3, the average of the highest 1/3 run-up events. Of
these statistics, we use R2% as the representative run-up value for this
study to be consistentwith earlier studies of extreme run-up on beaches
(e.g., Holman, 1986; Mase, 1989; Ruggiero et al., 2001; Stockdon et al.,
2006) and structures (Pullen et al., 2007; Van der Meer and Stam,
1992; VanderMeer, 1998).

Fig. 5 compares the numerical data from Case 1 (symbols) with pre-
dictions of the empirical model by the Stockdon model (lines). Case 1A
(circle), 1B (triangle), and 1C (diamond) show the different foreshore
slope condition from mild to steep, and the solid, dash, and dash-dot
line show the corresponding Stockdon model results. Both the numeri-
cal data and the Stockdon model show that R2% increases linearly with
increasing (H0L0)0.5. The numerical data were generated using a bottom
friction f = 0.02. Comparisons of the data with the Stockdon model for
the two other values of bottom friction (0.01, 0.03) gave less satisfactory
agreement, so f=0.02was adopted for the remainder of this study. This
value is reasonable compared to other numerical studies of wave run-
up on beaches (e.g., Chen et al., 2000; Liu and Cho, 1994; Lynett, et al.,
2002).

Fig. 6 shows Case 1model results (symbols, same notation as Fig. 5),
with the run-up normalized by the significant offshore wave height
(R2%/H0) plotted as a function of the Iribarren number based on the fore-
shore slope, ξf , in Eq. (4). The data for the three different slopes collapse
onto nearly a single curve, highlighting the utility of this parameter over
the dimensional form (H0L0)0.5. We note that there is still some scatter,
due to the nature of using R2% based on the average of approximately
four individual run-up events per run, and plots of Rs/H0 vs. ξf and
Rave/H0 vs. ξf showed considerably less scatter. The empirical model of
Holman (1986) shown by the dash line (Eq. (3)) and based on field ob-
servations underestimates the normalized run-up, and the model of
Mase (1989) based on laboratory observations over a plane slope over-
estimates the run-up. Nevertheless, we use the general form of these
equations (without the y-intercept for simplicity) fitted to the numeri-
cal data as a function of ξf

R2%

H0
¼ 1:35ξ f

0:65 ð13Þ

and use this as a baseline when comparing with the more complicated
cases including storm surge and berm width.

Table 3
Summary of model input for Case 1.

Case D50 [mm] tan βf [–] Hs

[m]
Tp
[s]

f
[–]

No. of runs

1A 0.3 0.023 1.0, 2.0 10, 12.5, 15, 17.5 0.01, 0.02, 0.03 24
1B 0.4 0.054 1.0, 2.0 10, 12.5, 15, 17.5 0.01, 0.02, 0.03 24
1C 0.5 0.091 1.0, 2.0 10, 12.5, 15, 17.5 0.01, 0.02, 0.03 24

Note: hB = 3.5 m, S= 0 m,WB = 0 m, hD = 0 m, WD = 0 m.

Table 4
Summary of model input for Case 2.

Model case S
[m]

Hs

[m]
Tp
[s]

No. of runs

2A 0.0 2.0, 3.0, 4.0, 5.0 10, 12, 14, 16, 18 20
2B 1.0 2.0, 3.0, 4.0, 5.0 10, 12, 14, 16, 18 20
2C 2.0 2.0, 3.0, 4.0, 5.0 10, 12, 14, 16, 18 20
2D 3.0 2.0, 3.0, 4.0, 5.0 10, 12, 14, 16, 18 20

Note: D50 = 0.3 mm, hB = 2.5 m, WB = 55 m, hD = 5 m,WD = 70 m.
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3.2. Case 2: run-up with varying surge levels

For Case 2, we add a dune–berm profile following the idealized
cross-shore profile shown in Fig. 1 with hB = 2.5 m, WB = 55 m,
hD = 5 m, WD = 70 m, and tanβf = 0.023 and apply four storm surge
levels (S = 0.0, 1.0, 2.0, and 3.0 m). In Fig. 7, the numerical data show
that, for a given value of (H0L0)0.5, the run-up is nearly the same for
the first two cases (S = 0.0 and 1.0 m). For S = 2.0 m, the run-up is in
a transition from being foreshore dominant to being dune dominant
and there is no clear trend. However, as the surge level increases to
S=3.0m, the run-up is significantly higher because the run-up is dom-
inated by the dune slope at this level. Fig. 7 also compares these numer-
ical data to the Stockdon model where the solid line is Eq. (6) using the
foreshore slope (tanβf=0.023) and the dashed line uses the dune slope

(tanβD=0.143) defined as a dune steepness (2hD/WD) for simplicity in
this study. As expected from the comparison shown in Fig. 5, the
Stockdon model agrees with the numerical data when the surge level
is low and the run-up is confined to the foreshore slope. However, the
Stockdon model significantly underpredicts the run-up when the
surge level is high (S = 3.0 m, square symbols). Alternatively, the
dashed line shows that the Stockdon model overpredicts all of the nu-
merical data when the dune slope is used. This is likely due to the
55 m wide dune used for this portion of the study which causes addi-
tional wave dissipation.

Fig. 8 shows the data of Fig. 7 replotted as the normalized run-up
R2%/H0 versus the Iribarren number based on foreshore slope ξf. Not sur-
prisingly for the cases where the surge level was low and the dry beach
widthwas not amajor factor, themodel of Holman (dashed) provides a
lower bound estimate, themodel of Mase (dash-dot) provides an upper
bound, and the calibrated model (Eq. (13)) provides a reasonable esti-
mate. All of these models underpredict the highest surge case (square
symbols). In summary, Figs. 7 and 8 highlight the shortcomings of
existing empirical models to predict extreme run-up with elevated
surge over some fixed width of dry beach similar to that shown in Fig. 1.

3.3. Case 3: considering a range of berm widths and surge levels

In Case 3 we consider a wide range of bermwidths and surge levels
to develop a better understanding of how bermwidth affects wave run-
up. Fig. 9 shows the numerical run-up data with circles shaded from
black to white for Case 3A (WB = 0 m), 3B (WB = 20 m), 3C (WB =
55 m), 3D (WB = 100 m), and 3E (WB = 200 m). Although there is

Table 5
Summary of model input for Case 3.

Model case WB

[m]
S
[m]

Hs

[m]
Tp
[s]

No. of runs

3A 0 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 2.0, 3.0, 4.0 10, 12, 14, 16, 18 90
3B 25 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 2.0, 3.0, 4.0 10, 12, 14, 16, 18 90
3C 55 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 2.0, 3.0, 4.0 10, 12, 14, 16, 18 90
3D 100 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 2.0, 3.0, 4.0 10, 12, 14, 16, 18 90
3E 200 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 2.0, 3.0, 4.0 10, 12, 14, 16, 18 90

Note: D50 = 0.3 mm, hB = 2.5 m, hD = 5 m,WD = 70 m.

Fig. 2. Spectral densities of surface elevation for Case 1A as a function of normalized fre-
quency, f⁎ at (a) WG1 offshore, (b) WG2 in the shoaling region, and (c) WG3 in the surf
zone.

Fig. 3. (a) Run-up for Case 1A, and (b) detail of upper panel. Star symbol indicates local
run-up maximum.
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significant scatter in these data, there is a general trend of a decrease in
run-up as the berm width increases. The Stockdon model is shown
using the foreshore (solid) and dune (dash) slopes as in Fig. 7. Fig. 9
shows that the Stockdon model based on the dune slope no longer pro-
vides an upper bound to the run-up as several of the run-up values for
Case 3A with WB = 0 m exceed the Stockdon model predictions.
Similarly, the Stockdon model no longer provides a lower bound
based on the foreshore slope, particularly for Case 3E with berm width
of 200 m, noting that it is likely that this condition is beyond the range
for which the model was calibrated and less likely to occur on natural
beach.

4. New empirical run-up equation

In this section, we developed new run-up equations based on the
modeling experience provided by Cases 1 to 3 and on the comparisons
with existing empirical formulas. The range of Iribarren number used
in Case 1 and Case 3 is only validated for the breakingwave run-up con-
dition (ξf b 2). In developing this new equation, we kept the general
form of Eq. (13) where the run-up is normalized by the significant

offshore wave height (R2%/H0) and expressed as a function of the
Iribarren number.We found it is useful to redefine the Iribarren number
based on the foreshore–dune region as explained in Section 4.1 and to
introduce a dimensionless reduction factor to account for berm width,
similar to the reduction factors used in run-up on coastal structures to
account for energy loss due to porous armor stones as explained in
Section 4.2.

4.1. Run-up Iribarren number

We consider the cross-shore to be composed of three regions:
(1) the foreshore slope dominant region where the swash occurs only
on the beach slope and does not interact with the berm, (2) a transition
slope dominant region where the swash occurs at both the foreshore
slope and the dune slope regions, and (3) the dune slope dominant re-
gion where the swash only occurs at the dune slope. To reflect those
three regions, we introduce a new Iribarren number for run-up, ξR com-
posed of three parameters ξf, ξT, and ξD where the subscripts f, T, and D

Fig. 4. Cumulative probability density of wave run-up for Case 1A. Individual run-up
events (star symbols in Fig. 3) are plotted as discrete dots and appear as vertical lines in
discrete bins. Solid curve is interpolation through the mean of each cluster of dots.

Fig. 5. Run-up comparisons between the numerical model (circle, triangle, and diamond)
and the Stockdon model (solid, dash, and dash-dot) for Case 1A, 1B, and 1C, respectively.

Fig. 6. Comparisons of normalized run-up among thenumericalmodel for Case 1A (circle),
1B (triangle), and 1C (diamond) and models of Holman (dashed), Mase (dash-dot), and
Eq. (13) (solid).

Fig. 7. Run-up for Case 2 considering a range of surge levels. Symbols show numerical
model data for S= 0.0 m (circle), 1.0 m (triangle), 2.0 m (diamond), and 3.0 m (square),
and the Stockdon model uses foreshore slope (solid) and dune slope (dash).
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represent foreshore, transition and dune slope dominant regions, re-
spectively. The boundary of each region depends on the berm height,
storm surge level, and deep water wave height and was determined
empirically as follows. First, we assume that if the sum of the storm
surge level and 70% of the deep water wave height is less than berm
height, then there is no significant wave action over the berm, and the
run-up swash is limited primarily to the foreshore slope dominant re-
gion. The representative slope angle for this region is βf, and the corre-
sponding Iribarren number is ξf. Second, if the storm surge level is
greater than the sum of the berm height and 70% of the deep water
wave height (Eq. (14)), then we assume that swash motion occurs
only on the dune slope due to the high surge level and is not impacted
by the foreshore slope (Eq. (15)). Thus, the representative slope is
dune slope, βD, and the corresponding Iribarren number is ξD. Last, the
region between the foreshore slope and dune slope dominant region
is defined as a transition slope dominant regionwhere βT is used to rep-
resent a fictitious transition slope which is a combination of both the

foreshore slope and dune slope (Eq. (16)). The corresponding Iribarren
number is denoted ξT. Summarizing these definitions, we have

ξ f ¼
tan β fffiffiffiffiffiffiffiffiffiffiffi
H0
�
L0

q ; f or hB−S ≤ 0:7H0 ð14Þ

ξD ¼ tan βDffiffiffiffiffiffiffiffiffiffiffi
H0
�
L0

q ; f or S−hB ≥ 0:7H0 ð15Þ

ξT ¼ tan βTffiffiffiffiffiffiffiffiffiffiffi
H0
�
L0

q ; f or −0:7H0 b S−hB b 0:7H0 ð16Þ

For simplicity, we assume that the transition slope βT varies linearly
from foreshore to dune slope as the storm surge level changes and is
given as

βT ¼ 1−αð Þβ f þ αβD ð17Þ

whereα increases linearly 0 to 1 as a function of storm surge level, berm
height, and wave height and was found empirically to be

α ¼ S−hBð Þ þ 0:7H0

1:4H0
;Min α½ � ¼ 0 &Max α½ � ¼ 1 ð18Þ

where Min and Max are the minimum and maximum value, and α
ranges between 0 and 1. Eq. (18) provides a continuous function since
α = 0 at the lowest boundary of the transition region where S-
hB =−0.7 H0, so that βT = βf. Conversely, α=1 at the highest bound-
ary of the transition region where S-hB = 0.7 H0, and βT = βD.

To test the validity of Eqs. (14)–(18), we use Eq. (13) whichwas cal-
ibrated for Case 1, and replace ξf with ξR. Fig. 10 shows the run-up data
from Case 1 and Case 3 plotted against the run-up Iribarren number, ξR,
where the shaded symbols are same as Fig. 9 to identify the changes in
berm width and the three regions are differentiated as the foreshore
slope dominant region (square), transition slope dominant region (tri-
angle), and dune slope dominant region (circle). The solid line presents
our fitted curve results applying ξR to Eq. (13) and works well for the
foreshore slope dominant regions (square) and, not surprisingly, pro-
vides only an upper bound to the rest of the data (triangle, circle) and
does not account for the effects of berm width.

Fig. 8. Normalized run-up for Case 2 considering a range of surge levels. Symbols are the
same as Fig. 7, and lines are for models of Holman (dash), Mase (dash-dot), and Eq. (13)
(solid).

Fig. 9. Run-up for Case 3with the range of surge and bermwidths and the Stockdonmodel
using foreshore (solid) and dune (dash) slopes.

Fig. 10.Normalized run-up for Case 1 and Case 3 as a function of ξR and differentiated as a
foreshore (square), transition (triangle) and dune (circle) slope dominant region. Shading
to differentiate berm width is the same as Fig. 9. Solid line shows Eq. (13) with ξR.
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4.2. Parameterization of berm width

To incorporate the effect of berm width, we introduce a constant ‘C’
as a reduction factor, conceptually similar to that used by De Waal and
Van der Meer (1992) for coastal structures. Our new run-up equation
for foreshore-transition-dune slope beach condition is

R2%

H0
¼ 1:35CξR

0:65 ð19Þ

where C is the reduction coefficient expecting that C is near 1 when the
berm width is small and decreases as the berm width increases, and ξR
chosen among ξf, ξT, and ξD defined by Eqs. (14)–(16), depending on the
geometric conditions of H0, S, and h. To parameterize C based on berm
width and to keep the systemof equation dimensionless,we use the off-
shore wavelength L0 as a scaling parameter so that the dimensionless
berm width isWB*=WB/L0 and the functional form is determined em-
pirically from the synthetic data.

Fig. 11 shows the numerical run-up data for Case 1 and 3 as a func-
tionWB*. To develop a suitable curve through these data, we considered
the data in bins and computed the mean value (circle) and a more con-
serve value based on average of all values exceeding the mean for a
given bin (triangle). Two curves were fit through themean and conser-
vative values, and are given by

C ¼ 0:8−0:4 tanh 2:0wB
�ð Þ ð20Þ

C ¼ 1:0−0:5 tanh 2:0wB
�ð Þ ð21Þ

Both mean and conservative curves show that C decreases signifi-
cantly for WB⁎ b 0.5, and decreases more gradually for WB⁎ N 1.0 implying
that there can be a significant reduction in wave run-up when the berm
(dry beach) width is extended from WB = 0 to WB = L0/2. However,
Fig. 11 implies there is relatively little benefit in extending the dry beach
width beyond one wavelength for reducing wave run-up for this idealized
case that does not consider morphological changes. In any case, the reduc-
tion factor C reaches a lower limit of 0.5 (conservative) or 0.4 (mean),
similar to the work of VanderMeer (1998) for coastal structures.

Fig. 12a–e shows the normalized run-up plotted as a function of ξR
for the five berm conditions, WB = 0, 25, 55, 100, and 200 m. For
reference, the solid line is Eq. (19) ignoring the effect of the berm
width (C = 1). The dashed and dash-dot lines include the berm effect

with C modeled using the average values (Eq. (20)) and are plotted
using constant values of Tp = 18 s and Tp = 10 s, respectively, to
cover the range of wave periods used to produce the data in each
panel. These two lines collapse to a single curve when WB = 0
(Fig. 12a) and are lower than the solid curve because we are using the
less conservative Eq. (20) for illustration. In summary, Fig. 12 shows
that the functional form of Eq. (19) with the new run-up Iribarren num-
ber ξR and the berm reduction factor based on the berm width normal-
ized by the deep water wavelength (Eq. (20)) behaves reasonably well
to incorporate storm surge and berm effects.

Finally in this section, we note that the original Stockdon model
(Eq. (6)) can bemodified using the ideas developed herein.We propose
the modified Stockdon model, version 1, as

R2% ¼ 1:1 0:35 tanβR H0L0ð Þ0:5 þ 0:5 H0L0 0:563 tanβR
2 þ 0:0004

� �h i0:5� �
ð22Þ

where the foreshore slope, βf of the original equation (Eq. (6)) is re-
placed by a run-up slope, βR which represents three slope conditions,
βf, βT, and βD depending on the surge level (S), berm height (hB), and
wave height (H0) as given by Eqs. (17) and (18). Also, we propose the
modified Stockdon model, version 2 as

R2% ¼ 1:1C 0:35 tanβR H0L0ð Þ0:5 þ 0:5 H0L0 0:563 tanβR
2 þ 0:0004

� �h i0:5
� �

ð23Þ

which adapts the berm width reduction factor, C.
Fig. 13 shows four comparisons of the normalized numerical run-up

data from Case 1 and Case 3 versus the run-up predictions from (a) the
newmodel using Eq. (20) for reduction factor, (b) the original Stockdon
model (Eq. (6)), (c) the modified Stockdon model, version 1 (Eq. (22))
and (d) the modified Stockdon model, version 2 (Eq. (23)) using
Eq. (21) for reduction factor. Perfect agreement is shown by the solid
line, and the corresponding values of the correlation (ρ2), root-mean-
square error (RMSE) and bias are listed in Table 6 along with values
from comparison to the original models of Holman (1986) and Mase
(1989).

Fig. 13a shows that the new model gives satisfactory agreement
when compared to the data for which it was calibrated and gives the
highest correlation coefficient and lowest RMSE. The original Stockdon
model has a negative correlation and large RMSE, indicating that it
would provide poor prediction of run-up for the idealized profile
shown in Fig. 1 over the range of conditions listed in Table 5. Detailed in-
spection of the model-data comparison showed that the largest devia-
tion was due to the berm effects not originally included in the
Stockdon model. Fig. 13c in which only our run-up slope parameteriza-
tion (βR) is adopted, shows that the first modification to the Stockdon
model slightly overpredicts the run-up (bias = 0.090 m) and provides
improvement to the original equation (ρ2 = 0.42). Fig. 13d in which
both our run-up slope parameterization and berm width reduction are
adopted, shows that the Stockdon model has the correlation and RMSE
a little bit lower than the new model.

5. Discussion

In this section we acknowledge some of the limitations of our pro-
posed model, discuss the comparisons with the original Stockdon
model, and offer some suggestions for improvement.

First, ourmodelwas developed using synthetic data under fairly ide-
alized cross-shore profile conditions. Althoughwe constructed themor-
phology using observed profiles (Table 1), based the surge and wave
forcing conditions on a range of observed conditions (Table 2), and
used a time-dependent numerical model to simulate the relevant near-
shore processes of breaking, amplification of low frequencies, and

Fig. 11.Dimensionless run-up (dots) as a function of a normalized bermwidth (WB
⁎).Mean

value (circle) and average of values exceeding the mean (triangle). Curves fitted through large
symbols given by Eq. (20) (dash) and Eq. (21) (dash-dot).
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swash (Figs. 2 and 3), there are limitations to this approach. For exam-
ple, there is no morphological response in our model, and it is well
known that the nearshore morphology responds quickly (on the scale
of hours), so that relevant parameters such as foreshore slope and
berm width are not constant during large storms. There is no variation
in surface roughness in our model. In nature, there is often vegetation
or other ecological influences that may change the surface roughness
and, therefore, it changes the run-up, particularly over the berm and
dune regions impacted bywaves and surge only during extreme events.
Similarly, we do not include percolation into the sand that may alter the
run-up statistics.We limited our analysis to the cross-shore only and in-
cluded no effects of wave direction. For steep coastal structures, this is
particularly important because waves will undergo less refraction. On
milder beaches, we anticipate that the waves are generally shore-
normal during run-up due to refraction, so we anticipate that wave
direction may be less important compared to morphological changes,
surface roughness, and percolation.

Second, our model has been developed and ‘verified’ using the same
data set. In the future, it will be necessary to use an independent source
formodel verification through field observations and laboratory testing.
We acknowledge that the comparison of our model and the Stockdon
model in Figs. 13a and b is limited in some sense because our model
was calibrated using the same data for which the comparisons were
made and the Stockdon model was calibrated using another data set.
On the other hand, the Stockdon model does not include the effects of
the berm width explicitly, so it would be unlikely that recalibration of
the original Stockdon model to the numerical data would offer much
improvement. Third, we show that the Stockdon model can be im-
proved significantly by adopting a new definition of the run-up slope
(βR) and by adopting a reduction factor (C) to account for the berm
width. On the other hand, we found that the format of our new equation

is simpler and consistent with earlier studies of run-up on beaches,
coastal structures and tsunamis. Consistent with these earlier studies,
the form of our equation is dimensionless, including the parameteriza-
tion of the bermwidth reduction factor. Moreover, the effects of surface
roughness, percolation, and other energy losses can easily be incorpo-
rated through a series of reduction coefficients, similar to the work of
VanderMeer (1998) for coastal structures.

6. Conclusion

This study highlights the role of the berm width in affecting wave
run-up during extreme surge events and the limitations of existing em-
pirical approaches to predict run-up in these conditions. Using a syn-
thetic data set derived from a time-dependent Boussinesq wave
model over an idealized cross-shore profile, we develop a new run-up
model using a new run-up Iribarren number to account for the dune,
transition and foreshore dominant regions and utilize a new berm re-
duction factor parameterized using the berm geometry and offshore
wavelength. The main conclusions of this work are:

1. Under conditions of hurricane storm surge and waves, the existence
of a berm is shown to influence the wave run-up, primarily through
dissipation of wave energy across the berm (Fig. 12).

2. The empirical wave run-up models of Holman (1986), Mase (1989)
and Stockdon et al. (2006) did not compare well with the synthetic
data set when the cross-shore profile included a wide berm and a
storm surge and waves of typical hurricane conditions (Fig. 13b,
Table 6).

3. The Iribarren number (Eq. (8)) is adequate foam to describe the run-
up on beaches with berms under hurricane surge and wave condi-
tions when the Iribarren number is modified to account for the

Fig. 12.Normalized run-up as a function of a run-up Iribarren number (ξR) fromCase 3 for the six bermwidths (a)WB=0, (b) 25, (c) 55, (d) 100, and (e) 200m. Eq. (19)with C=1(solid),
Eq. (20) for Tp = 18 s (dash) and Tp = 10 s (dash-dot).
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dune, transition and foreshore regions andwhen the influence of the
berm is included as a reduction factor for the idealized conditions
used to generate the data in this paper (Fig. 13a, Table 6).

4. The existing model of Stockdon et al. (2006) can be improved for
predicting run-up under hurricane surge and wave conditions and
for coastal berms and dunes by adopting the run-up Iribarren num-
ber and berm reduction factor described in this paper (Fig. 13d,
Table 6).

This study is based on a synthetic data set, and although the model
used to generate the data has been validated over a wide range of near-
shore conditions, there are several model simplifications – particularly
the lack of amoveable bed –which should be taken into account. There-
fore, the newmodel requires verification throughfield observations and
laboratory testing under hurricane surge and wave condition. In addi-
tion, further research is necessary to incorporate effects of coastal vege-
tation, percolation, and wave direction.
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